Ads
Ads

Ads

Ads

Ads

Ads

Ads

Ads

Ads




  • UCLA Technology Seminar

    Jac CURRIE, Mo HARMON, & Tas OSZKAY, "Cavity Skateboards."
    los angeles CALIFORNIA

    UCLA’s Kivi Sotamaa and his Spring 2013 Technology Seminar students set out to focuses on design as a method for exploring 
new applications and business potentials of Additive Manufacturing Technologies, and nanoscopically structured fibrous cellulose.

    The seminar participants developed workflows, design applications, and business models based
on the characteristics and manufacturing processes related
to 3-D printed fibrous Nanocellulose. The aim of the seminar was to introduce students to the cutting edge of digital design and manufacturing, and as a group, to go beyond that edge in order to create new design innovations, that can influence and drive the ongoing technical and scientific research. The seminar began by exploring and mapping out the technologies, and their possible areas of application, and proceeded by executing a number of case studies, developing work flows, and culminated in the production of 3-D printed prototypes.

    CAVITY SKATEBOARDS
    Students: Jac CURRIE, Mo HARMON, & Tas OSZKAY

    Customers can customize their own 3-D printed skateboard to order through a digital interface with variables including size and shape. Variety characterizes the skateboarding market, where new styles of skating are constantly causing diversions. A recent example of this is the boom in small plastic cruiser decks, most famously manufactured by Penny Australia. Cavity Skateboards recognizes their success but pushes the medium using 3-D printing technology to produce a more refined product.

    The intricate mineral skeletons of Radiolaria have served as performative and geometric inspiration throughout the development of this project. Their thin strained-like skeletons are structurally strong and durable yet also extremely lightweight. Emulating key aspects of this geometry serves the purpose for structural and esthetic value of the skateboard, but it also truly takes advantage of the additive manufacturing process. Traditional manufacturing would not be able to achieve the intricacy and complexity of the board’s design. 3-D printing to reach the high performance required, while maintaining the product’s light weight. The result is a skateboard unlike anything ever seen before.

    The shape of the board was designed with convex curvature and as the weight of the skater is applied, the board will naturally deflect downward compressing into a flat surface. This allows more of the material to remain in compression.

    EMOTO GLOVE
    Fully Customizable 3-D Printed Motorcycle Glove
    Students: Ryan HONG & Andrew RAFFEL

    The market for motorcycle gloves is limited, so someone looking for a personalized high performance Moto GP glove finds their choices limited to different colors.

    Flexibility, performance and protection have been maximized with attention to detail and design. Where the rider is the most exposed, the glove’s design creates the greatest distance between skin and asphalt to minimize risk in case of crash.

    Individual joints allow for the maximum range of motion required for steering flexibility. The aim has also been to let the motorcyclist feel more at one with the bike without losing grip or protection. The glove was created at Solid Concepts Inc. using a process called Selective Laser Sintering (SLS), which allows for a high level of control as well as detail within the desired design. In this case, the customer would have their hand scanned, or create a digital model in which a unique glove can be printed. To ensure personalization, the customer would be involved throughout the design process. A high level of customization once reserved for the most elite is now easily accessible for any passionate rider.

    SPLINT
    Additive Manufacturing for Limb Trauma
    Students: Nicholas SOLAKIAN, Derek BUELL, & Peter NGUYEN

    International aid organizations ship billions of dollars of aid and relief supplies to people in need around the world. The research looks at the possible demand for 3-D printed, on-demand products in such disaster and conflict affected areas.

    Direct Relief International (DRI), based in Santa Barbara, CA, works in high-need areas to improve health care and deliver medical supplies in 70 countries around the world. Director of International Programs at DRI, Brett Williams, advised with the possible need and use of 3-D printed medical supplies in their relief work.

    3-D printing technology would allow much higher quality products to be printed on-demand, replacing packaging and shipping supplies around the world and saving resources. Clear advantages would be achieved with today’s limitations in the manufacturing of the medical splint.

    FASHION SHOE
    Students: Marie TRABOLD & Roshanak MOSTAGHIM

    All feet are unique, but the selection of heels is more limited, often constrained by beauty. Since heels can’t cater to all heels, the result is some amount of discomfort.

    This proposal introduces a shoe that delivers a tailored fit by scanning the foot, while simultaneously creating an interesting contemporary organic look. Through the use of multi-material 3-D printing, the heel delivers a level of comfort not traditionally attainable with conventional methods.

    UNITY
    The World’s Most Seamless Soccer Boot
    Students: Brian BARNES, Jacob BLOOM, & Adam RUDE

    Soccer footwear and protection equipment have historically been separate: cleats and shin guards each performing a unique and independent function. As a result of the discontinuities between cleats and shin guards cause, large bumps occur on the top and sides of the feet and the shins, which can lead to erratic strikes of the soccer ball.

    Multi-material 3-D printing and the application of fibrous structural organizations allow for cleats and shin guards to be combined into a single seamless boot.

    ///

    PROJECT COLLABORATORS:
    UCLA Architecture and Urban Design,
 UCLA Technology Seminar Sotamaa:
 Brian Barnes
, Jacob Bloom, 
Derek Buell, 
James Currie
, Timothy Harmon, 
Ryan L Hong, 
Hongkai Li
, Steven Matti, Roshanak Mostaghim, 
Peter Nguyen
, Tas Febres-Cordero
, Andrew Raffel
, Adam Rude, 
Nicholas Solakian, 
Marie Trabold
, and Zhuoran Xu.

    Department of Applied Physics
, Aalto School of Science
    Olli Ikkala, Academic Professor
 and Henrikki Mertaniemi, Researcher

    ADD TEAM:
    Kivi Sotamaa, Director
    Ashish Mohite, Design Research
    Emmy Maruta, Design Research

    , , , , , ,